Proof of the formula for the nth derivative of the natural logarithm
- Get link
- X
- Other Apps
Hello everyone. Today we will prove the formula for the nth derivative of the natural logarithm. We will use the method of mathematical induction as a proof method.
Theorem: The nth derivative of the function \(\ln (x) \) for \(n \ge 1 \) is given by the formula: \[\frac {\mathrm {d} ^ n} { \mathrm {d} x ^ n} \ln (x) = \frac {(n-1)! (-1) ^ {n-1}} {x ^ n} \]
Proof:
1. Base case (n = 1) \[\frac {\mathrm {d}} {\mathrm {d} x} \ln (x) = \frac {(1-1)! (-1) ^ {1-1}} {x ^ 1} \] \[ \frac {1} {x} = \frac {(0)! (-1) ^ {0}} {x} \] \[\frac {1} {x} = \frac {1} {x} \]
2. Induction hypothesis (n = m)
Suppose that: \[\frac{\mathrm{d}^m}{\mathrm{d}x^m}\ln(x)=\frac{(m-1)!(-1)^{m-1}}{x^m}\]
3. Inductive step (n = m + 1)
Using the assumption from the second step, we will prove that: \[\frac {\mathrm {d} ^ {m + 1}} {\mathrm {d} x ^ {m + 1}} \ln (x) = \frac {m! (-1) ^ {m}} {x ^ {m + 1}} \]
So,
\[\frac{\mathrm{d}^{m+1}}{\mathrm{d}x^{m+1}}\ln(x)=\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\mathrm{d}^m}{\mathrm{d}x^m}\ln(x)\right)=\]\[\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{(m-1)!(-1)^{m-1}}{x^m}\right)=\]\[\frac{\frac{\mathrm{d}}{\mathrm{d}x}\left((m-1)!(-1)^{m-1}\right)\cdot x^m-\left((m-1)!(-1)^{m-1}\right)\cdot \frac{\mathrm{d}}{\mathrm{d}x}x^m}{x^{2m}}=\]\[\frac{-(m-1)!(-1)^{m-1}mx^{m-1}}{x^{2m}}=\]\[\frac{m(m-1)!(-1)^mx^{m-1}}{x^{2m}}=\]\[\frac{m!(-1)^m}{x^{2m-m+1}}=\]\[\frac{m!(-1)^m}{x^{m+1}}\]
\(\blacksquare\)
- Get link
- X
- Other Apps
Comments
Post a Comment