Proof of the formula for the area of a circle
- Get link
- X
- Other Apps
Hello everyone. Today we will prove the formula for the area of a circle. We will use the method of direct proof as a proof method.
Theorem: Denote by \(P \) the area of a circle and by \(r \) the radius of a circle. Then the following equation holds: \(P = r ^ 2 \pi \)
Proof:
The equation of a circle in Cartesian coordinate system is \(x ^ 2 + y ^ 2 = r ^ 2 \). Hence we have that \(y = \pm \sqrt {r ^ 2-x ^ 2} \). Based on the geometric interpretation of a certain integral, it follows: \[P = \int \limits _ {- r} ^ r \left(\sqrt {r ^ 2-x ^ 2} - \left (- \sqrt {r ^ 2-x ^ 2} \right) \right) \, dx \] So, \[P = \int \limits _ {- r} ^ r 2 \sqrt {r ^ 2-x ^ 2} \, dx \] \[P = \int \limits _ {- r} ^ r 2 \sqrt {r ^ 2 \left (1- \frac {x ^ 2} {r ^ 2} \right)} \, dx \] \[P = \int \limits _ {- r} ^ r 2r \sqrt {1- \frac {x ^ 2} {r ^ 2}} \, dx \] Let us now introduce the substitution \(x = r \cos \theta \). Hence, we have that \(dx = -r \sin \theta d \theta \). So we can write the following equation: \[P=-\int\limits_{\pi}^0 2r^2\sqrt{1-\frac{r^2\cos^2\theta}{r^2}}\sin\theta \, d\theta\] After simplification we get: \[P=-\int\limits_{\pi}^0 2r^2\sqrt{1-\cos^2\theta}\sin\theta \, d\theta\]\[P=-\int\limits_{\pi}^0 2r^2\sin^2\theta \, d\theta\]\[P=-r^2\int\limits_{\pi}^0 2\sin^2\theta \, d\theta\]\[P=-r^2\int\limits_{\pi}^0 (1-\cos2\theta) \, d\theta\]\[P=-r^2\left(\int\limits_{\pi}^0 d\theta-\int\limits_{\pi}^0 \cos2\theta \, d\theta\right)\]Since \(\int\limits_{\pi}^0 \cos2\theta \, d\theta=0\) we have: \[P=-r^2\int\limits_{\pi}^0 d\theta\]\[P=-r^2(0-\pi)\]\[P=r^2\pi\]
\(\blacksquare\)
- Get link
- X
- Other Apps
Comments
Post a Comment