Proof Concerning Central Line X5X6X_5X_6 of Triangle

Image
Hello everyone. Today we will prove theorem about central line X5X6X_5X_6 of triangle. Proof of the Central Line in a Golden Rectangle Construction Statement of the Theorem Let ABCDABCD be a golden rectangle where ABBC=ϕ \frac{AB}{BC} = \phi , and construct the square BCQP BCQP inside it. Reflect P P over D D to obtain E E . Then, the line EB EB coincides with the central line X5X6 X_5X_6 of triangle ABP ABP . Step-by-Step Proof 1. Define the Coordinates We assign coordinates as follows: A=(0,0) A = (0,0) , B=(ϕx,0) B = (\phi x, 0) , C=(ϕx,x) C = (\phi x, x) , D=(0,x) D = (0, x) . The square BCPQ BCPQ ensures P=(ϕx,2x) P = (\phi x, 2x) . The reflection of P P across D D is E=(ϕx,2x) E = (-\phi x, 2x) . 2. Compute the Nine-Point Center X5 X_5 The nine-point center X5 X_5 is the circumcenter of the medial triangle, which consists of the midpoints: M1=(0+ϕx2,0)=(ϕx2,0), M_1 = \left(\frac{0 + \phi x}{2}, 0\right) = \left(\frac{\phi x}{2}, 0\right), \[ M_2 = \left(\f...

Proof of the formula for the area of a circle

Hello everyone. Today we will prove the formula for the area of ​​a circle. We will use the method of direct proof as a proof method. 

Theorem: Denote by PP the area of ​​a circle and by rr the radius of a circle. Then the following equation holds: P=r2πP = r ^ 2 \pi  

Proof: 

The equation of a circle in Cartesian  coordinate system is x2+y2=r2x ^ 2 + y ^ 2 = r ^ 2 Hence we have that y=±r2x2y = \pm \sqrt {r ^ 2-x ^ 2} Based on the geometric interpretation of a certain integral, it follows: P=rr(r2x2(r2x2))dxP = \int \limits _ {- r} ^ r \left(\sqrt {r ^ 2-x ^ 2} - \left (- \sqrt {r ^ 2-x ^ 2} \right) \right) \, dx  So, P=rr2r2x2dxP = \int \limits _ {- r} ^ r 2 \sqrt {r ^ 2-x ^ 2} \, dx P=rr2r2(1x2r2)dxP = \int \limits _ {- r} ^ r 2 \sqrt {r ^ 2 \left (1- \frac {x ^ 2} {r ^ 2} \right)} \, dx P=rr2r1x2r2dxP = \int \limits _ {- r} ^ r 2r \sqrt {1- \frac {x ^ 2} {r ^ 2}} \, dx  Let us now introduce the substitution x=rcosθx = r \cos \theta Hence, we have that dx=rsinθdθdx = -r \sin \theta d \theta So we can write the following equation: P=π02r21r2cos2θr2sinθdθP=-\int\limits_{\pi}^0 2r^2\sqrt{1-\frac{r^2\cos^2\theta}{r^2}}\sin\theta \, d\theta After simplification we get:  P=π02r21cos2θsinθdθP=-\int\limits_{\pi}^0 2r^2\sqrt{1-\cos^2\theta}\sin\theta \, d\thetaP=π02r2sin2θdθP=-\int\limits_{\pi}^0 2r^2\sin^2\theta \, d\thetaP=r2π02sin2θdθP=-r^2\int\limits_{\pi}^0 2\sin^2\theta \, d\thetaP=r2π0(1cos2θ)dθP=-r^2\int\limits_{\pi}^0 (1-\cos2\theta) \, d\thetaP=r2(π0dθπ0cos2θdθ)P=-r^2\left(\int\limits_{\pi}^0 d\theta-\int\limits_{\pi}^0 \cos2\theta \, d\theta\right)Since π0cos2θdθ=0\int\limits_{\pi}^0 \cos2\theta \, d\theta=0 we have: P=r2π0dθP=-r^2\int\limits_{\pi}^0 d\thetaP=r2(0π)P=-r^2(0-\pi)P=r2πP=r^2\pi

\blacksquare

Comments

Popular posts from this blog

Proof of the product formula for π23\dfrac{\pi}{2\sqrt{3}}

Proof of the formula for the sum of the first n Fibonacci numbers