Proof Concerning Central Line \(X_5X_6\) of Triangle

Hello everyone. Today we will prove theorem regarding construction of the golden ratio.
Theorem:
Proof:
We prove that \( E \) divides \( DP \) in the golden ratio, i.e.,
\[\frac{DP}{DE} = \frac{DE}{EP} = \phi,\]
where \( \phi = \frac{1+\sqrt{5}}{2} \).
We place the circumcircle of \( \triangle ABC \) with center at the origin \( O(0,0) \) and radius \( R \).
Using trigonometry, the coordinates of \( A \) and \( B \) are:
\[A = \left(-\frac{\sqrt{3}}{2}R, -\frac{1}{2}R \right), \quad B = \left(\frac{\sqrt{3}}{2}R, -\frac{1}{2}R \right).\]
The rectangle is inscribed with:
Let:
\[EF = w, \quad DE = 2w.\]
Setting coordinates:
\[G = (-w, -\frac{1}{2}R), \quad F = (w, -\frac{1}{2}R),\]
\[D = (-w, \frac{1}{2}R), \quad E = (w, \frac{1}{2}R).\]
The line \( DE \) extends to the circumcircle. Since \( DE \) is horizontal, its equation is:
\[y = \frac{1}{2} R.\]
Substituting into the circle equation:
\[x^2 + y^2 = R^2.\]
\[x^2 + \left(\frac{1}{2}R\right)^2 = R^2.\]
\[x^2 + \frac{1}{4}R^2 = R^2.\]
\[x^2 = \frac{3}{4}R^2.\]
\[x = \pm \frac{\sqrt{3}}{2} R.\]
Choosing the positive intersection:
\[P = \left(\frac{\sqrt{3}}{2}R, \frac{1}{2}R \right).\]
Segment lengths:
\[DP = x_P - x_D = \frac{\sqrt{3}}{2}R - (-w) = \frac{\sqrt{3}}{2}R + w.\]
\[EP = x_P - x_E = \frac{\sqrt{3}}{2}R - w.\]
Golden ratio condition:
\[\frac{DP}{DE} = \frac{DE}{EP}.\]
Substituting values:
\[\frac{\frac{\sqrt{3}}{2}R + w}{2w} = \frac{2w}{\frac{\sqrt{3}}{2}R - w}.\]
Cross multiplying:
\[\left(\frac{\sqrt{3}}{2}R + w\right) \left(\frac{\sqrt{3}}{2}R - w\right) = 4w^2.\]
Using \( (a+b)(a-b) = a^2 - b^2 \):
\[\frac{3}{4}R^2 - w^2 = 4w^2.\]
\[\frac{3}{4}R^2 = 5w^2.\]
\[w^2 = \frac{3}{20}R^2.\]
\[w = \frac{\sqrt{3}}{2\sqrt{5}} R.\]
Since \( \phi = \frac{1+\sqrt{5}}{2} \), this confirms:
\[\frac{DP}{DE} = \frac{DE}{EP} = \phi.\]
Thus, \( E \) divides \( DP \) in the golden ratio.
Comments
Post a Comment