Proof Concerning Central Line \(X_5X_6\) of Triangle

Let \( ABC \) be a right-angled triangle with the right angle at \( C \). Consider its associated special triangles:
Denote their respective areas as \( T_0, T_1, T_2, \) and \( T_3 \). Then, the areas satisfy the relation:
\[ T_3 = T_0 + T_1 + T_2. \]
Let:
The area of \( \triangle ABC \) is given by:
\[ T = \frac{1}{2} a b. \]
The area of the intouch triangle is given by:
\[ T_0 = r s. \]
Using the inradius formula:
\[ r = \frac{T}{s} = \frac{\frac{1}{2} a b}{s}, \]
we obtain:
\[ T_0 = \left( \frac{T}{s} \right) s = T = \frac{1}{2} a b. \]
Each extouch triangle has an area given by:
\[ T_i = r_X (s - x), \]
where \( r_X \) is the exradius corresponding to the side \( x \).
\[ T_1 = r_A (s - a). \]
Using:
\[ r_A = \frac{T}{s - a} = \frac{\frac{1}{2} a b}{s - a}, \]
we get:
\[ T_1 = \left( \frac{\frac{1}{2} a b}{s - a} \right) (s - a) = \frac{1}{2} a b. \]
\[ T_2 = r_B (s - b). \]
Similarly, using:
\[ r_B = \frac{T}{s - b} = \frac{\frac{1}{2} a b}{s - b}, \]
we obtain:
\[ T_2 = \left( \frac{\frac{1}{2} a b}{s - b} \right) (s - b) = \frac{1}{2} a b. \]
\[ T_3 = r_C (s - c). \]
Using:
\[ r_C = \frac{T}{s - c} = \frac{\frac{1}{2} a b}{s - c}, \]
we get:
\[ T_3 = \left( \frac{\frac{1}{2} a b}{s - c} \right) (s - c) = \frac{3}{2} a b. \]
Now, we check:
\[ T_3 = T_0 + T_1 + T_2. \]
Substituting the values:
\[ \frac{3}{2} a b = \frac{1}{2} a b + \frac{1}{2} a b + \frac{1}{2} a b. \]
This confirms the relation.
Thus, we have proved that:
\[ T_3 = T_0 + T_1 + T_2. \]
which completes the proof.
Comments
Post a Comment