Proof Concerning Central Line \(X_5X_6\) of Triangle

Image
Hello everyone. Today we will prove theorem about central line \(X_5X_6\) of triangle. Proof of the Central Line in a Golden Rectangle Construction Statement of the Theorem Let \(ABCD\) be a golden rectangle where \( \frac{AB}{BC} = \phi \), and construct the square \( BCQP \) inside it. Reflect \( P \) over \( D \) to obtain \( E \). Then, the line \( EB \) coincides with the central line \( X_5X_6 \) of triangle \( ABP \). Step-by-Step Proof 1. Define the Coordinates We assign coordinates as follows: \( A = (0,0) \), \( B = (\phi x, 0) \), \( C = (\phi x, x) \), \( D = (0, x) \). The square \( BCPQ \) ensures \( P = (\phi x, 2x) \). The reflection of \( P \) across \( D \) is \( E = (-\phi x, 2x) \). 2. Compute the Nine-Point Center \( X_5 \) The nine-point center \( X_5 \) is the circumcenter of the medial triangle, which consists of the midpoints: \[ M_1 = \left(\frac{0 + \phi x}{2}, 0\right) = \left(\frac{\phi x}{2}, 0\right), \] \[ M_2 = \left(\f...

Proof that the set of prime numbers is infinite

Hello everyone. Today we will prove that the set of prime numbers is infinite. We will use the method of contradiction as a proof method. We'll also use the theorem of French mathematician Eduardo Lucas. 

Theorem (Lucas): Every prime factor of Fermat number \(F _ n = 2 ^ {2 ^ n} + 1\); (\(n > 1\)) is of the form \(k2 ^{n + 2} + 1\). 

Theorem: The set of prime numbers is infinite.

Proof:

Suppose opposite, that there are just finally many prime numbers and we denote the largest prime by \(p\). Then \(F_p\) must be a composite number because \(F_p>p\). By Lucas theorem we know that there is a prime number \(q\) of the form \(k2 ^{p + 2} + 1\) that divides \(F_p\). But \(q>p\) , thus we arrived at  a contradiction. Hence, the set of prime numbers is infinite.

\(\blacksquare\)

Comments

Popular posts from this blog

Proof of the product formula for \(\dfrac{\pi}{2\sqrt{3}}\)

Proof of the formula for the sum of the first n Fibonacci numbers

Proof of the formula for the area of a circle