Posts

Showing posts from July, 2023

Proof Concerning Central Line X5X6X_5X_6 of Triangle

Image
Hello everyone. Today we will prove theorem about central line X5X6X_5X_6 of triangle. Proof of the Central Line in a Golden Rectangle Construction Statement of the Theorem Let ABCDABCD be a golden rectangle where ABBC=ϕ \frac{AB}{BC} = \phi , and construct the square BCQP BCQP inside it. Reflect P P over D D to obtain E E . Then, the line EB EB coincides with the central line X5X6 X_5X_6 of triangle ABP ABP . Step-by-Step Proof 1. Define the Coordinates We assign coordinates as follows: A=(0,0) A = (0,0) , B=(ϕx,0) B = (\phi x, 0) , C=(ϕx,x) C = (\phi x, x) , D=(0,x) D = (0, x) . The square BCPQ BCPQ ensures P=(ϕx,2x) P = (\phi x, 2x) . The reflection of P P across D D is E=(ϕx,2x) E = (-\phi x, 2x) . 2. Compute the Nine-Point Center X5 X_5 The nine-point center X5 X_5 is the circumcenter of the medial triangle, which consists of the midpoints: M1=(0+ϕx2,0)=(ϕx2,0), M_1 = \left(\frac{0 + \phi x}{2}, 0\right) = \left(\frac{\phi x}{2}, 0\right), \[ M_2 = \left(\f...

Proof of the product formula for π23\dfrac{\pi}{2\sqrt{3}}

  Hello everyone.  Today we will prove the product formula for  π23\dfrac{\pi}{2\sqrt{3}}.  We will use the method of direct proof as a proof method.  Theorem 1:  π23=n=1χ(n)n\frac{\pi}{2\sqrt{3}}=\displaystyle\sum_{n=1}^{\infty}\frac{\chi(n)}{n}whereχ(n)={1,if n1(mod6)1,if n1(mod6)0,otherwise\text{where} \quad \chi(n)=\begin{cases} 1, & \text{if } n \equiv 1 \pmod{6}\\-1, & \text{if } n \equiv -1 \pmod{6}\\0, & \text{otherwise}\end{cases} Theorem 2:  We haveπ23=5711131719232966121218182430\frac{\pi}{2\sqrt{3}}=\frac{5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdots}{6 \cdot 6 \cdot 12 \cdot 12 \cdot 18 \cdot 18 \cdot 24 \cdot 30 \cdots}expression whose numerators are the sequence of the odd prime numbers greater than 33 and whose denominators are even–even numbers one unit more or less than the corresponding numerators. Proof: By Theorem 1 we know that π23=115+17111+113117+119\frac{\pi}{2\sqrt{3}}=1-\frac{1}{5}+\frac{1}{7}-\frac{1}{11}+\frac{1}{13}-\frac{1}{17}+\frac{1}{19}-\cdots we will have \[\frac{1}{5} \cdo...