Posts

Showing posts from June, 2023

Proof Concerning Central Line \(X_5X_6\) of Triangle

Image
Hello everyone. Today we will prove theorem about central line \(X_5X_6\) of triangle. Proof of the Central Line in a Golden Rectangle Construction Statement of the Theorem Let \(ABCD\) be a golden rectangle where \( \frac{AB}{BC} = \phi \), and construct the square \( BCQP \) inside it. Reflect \( P \) over \( D \) to obtain \( E \). Then, the line \( EB \) coincides with the central line \( X_5X_6 \) of triangle \( ABP \). Step-by-Step Proof 1. Define the Coordinates We assign coordinates as follows: \( A = (0,0) \), \( B = (\phi x, 0) \), \( C = (\phi x, x) \), \( D = (0, x) \). The square \( BCPQ \) ensures \( P = (\phi x, 2x) \). The reflection of \( P \) across \( D \) is \( E = (-\phi x, 2x) \). 2. Compute the Nine-Point Center \( X_5 \) The nine-point center \( X_5 \) is the circumcenter of the medial triangle, which consists of the midpoints: \[ M_1 = \left(\frac{0 + \phi x}{2}, 0\right) = \left(\frac{\phi x}{2}, 0\right), \] \[ M_2 = \left(\f...

Proof that \(I_0(\sqrt{2})\) is an irrational number

   Hello everyone.  Today we will prove that   \(I_0(\sqrt{2})\) is an irrational number, where \( I_0\) denotes a modified Bessel function of the first kind. We will use the method of contradiction as a proof method. Theorem 1:    \(I_0(\sqrt{2})=\displaystyle\sum_{n=0}^{\infty} \frac{1}{(n!)^22^n}\) Theorem 2:    \(I_0(\sqrt{2})\)   is an irrational number. Proof: Suppose that  \(I_0(\sqrt{2})\)  is a rational number. Then  \(I_0(\sqrt{2})\)  can be written in the form \( \dfrac{p}{q} \) where \( p \)  and \( q\) are coprime integers such that \(q \ge 1\). By Theorem 1 we can write the following equality: \(q!(q-1)!p2^q=\displaystyle\sum_{n=0}^{\infty} \frac{(q!)^22^q}{(n!)^22^n}\) . Since left hand side of this equality is an integer the sum \(\displaystyle\sum_{n=q+1}^{\infty} \frac{(q!)^22^q}{(n!)^22^n}\) which is greater than zero \(0\)  also must be an integer. Clearly for \(n \ge q+1\) we have , \(\...